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Equipartition calculation for supernova remnants
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Abstract. Equipartition or the minimum-energy calculation is a widespread method for
estimating magnetic field strength and energy in the magnetic field and cosmic rays par-
ticles by using only the radio synchrotron emission. Despite of its approximate character,
it remains a useful tool in situations when no other data about the source are available. In
this paper we give a modified calculation which we think is more appropriate for estimating
magnetic fields and energetics of supernova remnants.
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1. Introduction

Details of equipartition and revised equipar-
tition calculation for radio sources in general
are available in Pacholczyk (1970) and Beck
& Krause (2005), respectively. A discussion on
whether equipartition of energy is fulfilled in
real sources and how reliable magnetic field es-
timates from equipartition calculation are can
be found in Duric (1990). We are relying on
Bell’s theory of diffusive shock acceleration
(Bell 1978) and his assumption concerning in-
jection of particles into the acceleration pro-
cess to derive a slightly modified equipartition
i.e. minimum-energy calculation applicable to
’mature’ supernova remnants (vs � 6000 −
7000 km/s) with spectral index 0.5 < α < 1
(energy index 2 < γ < 3).

2. Analysis and results

Following Bell (1978) we will assume that a
certain number of particles have been injected
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into the acceleration process all with the same
injection energy Ein j ≈ 4 1

2 mpv2
s . 1 If we as-

sume that shock velocity is low enough so that
Einj � mec2 (and pe

inj � mec), for energy
density of a cosmic rays species (e.g. elec-
trons, protons, heavier ions), assuming power-
low momentum distribution, we have

ε =

∫ p∞

pinj

4πkp−γ(
√

p2c2 + m2c4 − mc2)dp

≈
∫ ∞

0
4πkp−γ(

√
p2c2 + m2c4 − mc2)dp

= K(mc2)2−γ Γ( 3−γ
2 )Γ( γ−2

2 )

2
√
π(γ − 1)

. (1)

where K is constant in power-low energy dis-
tribution N(E) = KE−γ. Total cosmic rays en-
ergy density is then

εCR = Ke(mec2)2−γ Γ( 3−γ
2 )Γ( γ−2

2 )

2
√
π(γ − 1)

(1 + κ), (2)

1 We assume fully ionized, globally electro-
neutral plasma.
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where

κ =

(mp

me

)(3−γ)/2
∑

i A(3−γ)/2
i νi∑
i Ziνi

, (3)

νi are ion abundances, Ai and Zi are mass
and charge numbers of elements and we
assumed that at high energies Kp/Ke ≈
(np/ne)(mp/me)(γ−1)/2. Note that we have ne-
glected energy losses.

Emission coefficient for synchrotron radia-
tion is, on the other hand,

εν = c5Ke(B sin Θ)(γ+1)/2
(
ν

2c1

)(1−γ)/2
, (4)

where c1, c3 and c5 = c3Γ( 3γ−1
12 )Γ( 3γ+19

12 )/(γ+1)
are defined in Pacholczyk (1970). We will use
the flux density which is defined as

S ν =
Lν

4πd2 =

4π
3 R3 fEν
4πd2 =

4π
3
εν f θ3d, (5)

where f is volume filling factor, θ = R/d is
angular radius and d is the distance.

If we assume isotropic distribution for the
orientation of the pitch angles (Longair 1994)
we can take for the average 〈(sin Θ)(γ+1)/2〉

1
2

∫ π

0
(sin Θ)(γ+3)/2dΘ =

√
π

2
Γ( γ+5

4 )

Γ( γ+7
4 )

. (6)

For the total energy we have

E =
4π
3

R3 f (εCR + εB), εB =
1

8π
B2. (7)

Looking for the minimum energy with respect
to B gives

EB =
γ + 1

4
ECR, Emin =

γ + 5
γ + 1

EB, (8)

and

B =

( 3
2π

(γ + 1)Γ( 3−γ
2 )Γ( γ−2

2 )Γ( γ+7
4 )

(γ − 1)Γ( γ+5
4 )

S ν

f dθ3 ·

·(mec2)2−γ (2c1)(1−γ)/2

c5
(1 + κ)ν(γ−1)/2

)2/(γ+5)
, (9)

or

B [Ga] ≈
(
6.286 · 10(9γ−79)/2 · (10)

· γ + 1
γ − 1

Γ( 3−γ
2 )Γ( γ−2

2 )Γ( γ+7
4 )

Γ( γ+5
4 )

·

· (mec2)2−γ (2c1)(1−γ)/2

c5
(1 + κ) ·

· S ν[Jy]
f d[kpc]θ[arcmin]3 ν[GHz](γ−1)/2

)2/(γ+5)
,

where mec2 ≈ 8.187 · 10−7 ergs.
Our approach is similar to Beck & Krause

(2005) in a sense that we do not integrate over
frequencies as Pacholczyk (1970), however,

(i) we assume power-low spectra n(p) ∝ p−γ
and integrate over momentum to obtain en-
ergy densities of particles,

(ii) we take into account different ion species
and not just equal number of protons and
electrons at injection (e.g. for H to He ra-
tio 10:1 there is more energy in α-particles
then in electrons),

(iii) we use flux density at a given frequency
and assume isotropic distribution of the
pitch angles for the remnant as a whole.

Incorporating the dependence ε = ε(Einj),
which would make formula applicable to the
younger remnants, we leave for future work.
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